
Analysis conducted by

On the date of
January 25, 2024

Serene Yew

Technical

Risk Assessment
Detailed Code Report

& Recommendations

Astral Yeti Energy
Report assembled for

Table of Contents

Executive Summary ..

..

..

..

..

..

1

Codebases 2

Depolyment 3

Architecture 4

Risks 5

Recommendations 7

Executive Summary

During the course of this audit, we have reviewed all the codebases,
collected infrastructure details in one place, and distilled the project setup
instructions so that the codebases are easier to set up on new developer
machines.

There are no glaring items that indicate that the app is not ready to be
submitted to the App Store at this time. However, during the application
process, unanticipated items are expected to arise. We recommend
starting this process as soon as possible so that we can get feedback to
work from.

While the app does work as is, and the code is in decent shape, there are
a number of items that put Inspectagram at risk of data breach, as well as
some that will significantly slow down turnaround time of development,
and increase the risk of unknown bugs appearing.

We have determined a list of high priority security items that should be
addressed as soon as possible, and come up with a proposed go-forward
plan.

See Recommendations.

Technical Risk Assessment for Astral Yeti Energy pg 2

api-gateway

report-gateway

mobile-app-v3

realm-config

mobile-app

image-cdn

realm-backend

api-gatewayhttps://github.com/astralyetienergy/api-gateway

https://github.com/astralyetienergy/report-gateway

https://github.com/astralyetienergy

https://github.com/astralyetienergy/realm-config

https://github.com/astralyetienergy/mobile-app

https://github.com/astralyetienergy/image-cdn

https://github.com/astralyetienergy/realm-backend

This repository holds the code that hosts the API. It appears to host some endpoints
that interact with the MySQL database.

This repository holds an application that renders the reports and generates the PDF
files.

This repository contains the React Native code for the mobile app.

This appears to be some kind of repository that is being used by a continuous
integration process that contains the configuration for the realm database.

This appears to be an old version of the mobile app that is no longer in use.

This repository contains some code to host images on a CDN, although we were
unable to determine if it’s currently being used.

This repository appears to be an older version of the mobile app that is no longer in
use.

Codebases

Technical Risk Assessment for Astral Yeti Energy pg 3

Currently, the deployment process is manual. The developers upload the
code to the production server and restarts the web server. The mobile
server is built and then distributed through Testflight.

See more in Risks.

Deployment

Technical Risk Assessment for Astral Yeti Energy pg 4

The architecture is mostly reasonable for the features implemented. The
MongoDB instance is functional, but comes with challenges for testing.
Because of the way that the MongoDB instance was built, they had to
create a separate MySQL database to hold data that doesn’t need to be
regularly synced with the mobile app.

The report gateway is on really large EC2 boxes to be able to support
report generation. It’s unclear at this time if this could be optimized with a
different implementation.

The S3 bucket stores generated PDFs. This is in line with industry best
practices.

Architecture

Risks

Technical Risk Assessment for Astral Yeti Energy pg 5

Credentials at Risk

Certificates in repository

Plaintext Password Storage

Use of Production Database from all Environments

Currently, there are quite a number of secure credentials in the code repository. While
the repositories are private, this is considered unsafe. Repositories are breached fairly
often, usually without the owner’s knowledge. These credentials need to be reissued
and moved to more conventionally secure locations, like environment variables. (See
report-gateway, mobile-app-v3, api-gateway)

Also found were database connection credentials (api-gateway) and S3 bucket
credentials (report-gateway).

As above, credentials should never be in the code repository. These are the
certificates that are used to authenticate your application with Apple. If these
credentials are compromised, a third-party would be able to impersonate you and
replace your app. (Reference mobile-app-v3)

> Note that this only applies to the email/password logins, not the ones that use
Apple Sign-in.

Typically, passwords are saved as a one-way hash. It is done this way such that if your
database is breached, the attacker is unable to use the information found to log in to
your system, or others where the passwords may also be used. On your codebases,
the default hashing behavior has been overridden so that the passwords are saved
and compared in plaintext. (See report-gateway, api-gateway).

There is no separation of the development environment from staging (testing) or
production environments. This can be quite risky as it puts your live production data at
risk of being deleted, modified, or even just out of sync with the code. Typically, there
are separate environments for development (local environments that developers use
for active coding), staging (a production-like environment where we can test pre-
production code), and production (what the end users see).

Technical Risk Assessment for Astral Yeti Energy pg 6

PHP/Symfony Versions

Certificates in repository

No Production Deployment Management

No Automated Tests

Large Number of EOL Dependencies

God Mode

Both the api-gateway and report-gateway are on PHP version 7.4, which was End-of-
Life last November. They need to be upgraded to 8.2 to receive the new security
patches. Symfony would need to be upgraded from 6.2 to 6.4 in order to support PHP
8.2.

As above, credentials should never be in the code repository. These are the
certificates that are used to authenticate your application with Apple. If these
credentials are compromised, a third-party would be able to impersonate you and
replace your app. (Reference mobile-app-v3)

There appears to be no managed deployment process for pushing code to the
production server. This means that it is not possible to track deployments, rollback in
the event of a failure, or only swap to the new version on a successful deployment.

There are no automated test suites on any of the repositories, which makes it
challenging for the development team to ensure that the product will continue to
function as expected when changes and additions are made. Without automated test
suites, it will be challenging to perform library updates with confidence that nothing
will change or break.

While there are a number of out of date dependencies, there is a quick fix to update
most of the high priority ones. However, without an automated test suite, it’s
impossible to ensure that the application will continue to function exactly the same
way after the upgrades.

God Mode was easily accessible and the pin to access the God mode login screen is
stored and hardcoded inside of the mobile app code base. (See mobile-app-v3). This
is quite easily breachable. iOS apps can be reverse engineered, and it is unsafe for
credentials to be part of the build.

Risks continued

Technical Risk Assessment for Astral Yeti Energy pg 7

Create a production deployment process

Fix battery drain problem on iPhone 12

Create smoke test suites
This is really the highest priority item to ensure that the team is able to iterate quickly
on changes and detect breakage before code goes into production. Without a test
suite, every change or addition risks breaking functionality for users without anyone
knowing until an end user reports it.

There is a huge range of how much we can do here. The most basic implementation
would involve creating test suite structures for the api-gateway, mobile-app-v3, and
report-gateway, then writing smoke tests to ensure that each project continues to
compile.

Cost: $10,000+

Timeline: 2+ weeks

We propose creating docker builds that can be managed with Cloud66 so that we can
track deployments, the changes made between deployments, and easily rollback
failed deployments.

Cost: $6,000

Timeline: 2 weeks

There seems to be an issue with battery drain on the iPhone 12. We would need to run
diagnostics and monitoring to be able to determine the cause of the problem.

Cost and timeline are unknown until we determine the cause of the issue.

All the following estimates are provided with the assunmption that we first
implement at least smoke test suits.

Recommendations | High Priority

Technical Risk Assessment for Astral Yeti Energy pg 8

Separate development and staging environments

from production

Update libraries with critical updates

Upgrade PHP/Symfony

Develop separate or mock instances so that code can be tested independently of the
production databases. This will allow developers to work without risking production
data and for QA testers to test new functionality first without users being impacted.

We believe that we can create a scaled down staging environment that will be similar
to the production environment with a lower cost. However, there is still a lot of
discovery to be done here.

Cost: $10,000 - $20,000

Timeline: 4 weeks

Security is of utmost importance in any codebase. A single data breach could destroy
a company. Libraries need to be kept up to date in order to ensure that security
patches are applied promptly.

Cost of performing the upgrade: $1,000

Cost of regression testing the application (assuming we have a separate testing
server): $8,000

Timeline: 3 weeks

Similar to the above, frameworks need to be kept up to date. End-of-life framework
versions mean that security patches are not even provided anymore, which puts your
application at risk.

Here, we would upgrade both PHP and Symfony for the api-gateway and report-
gateway code bases.

Cost of performing the upgrade: $2,000

Cost of regression testing the application (assuming we have a separate testing
server): $8,000

Timeline: 3 weeks

Recommendations | Medium Priority

Technical Risk Assessment for Astral Yeti Energy pg 9

Moving credentials out of the repository

Issue new certificates for the app store

Move god mode out of the mobile app

Hash passwords

The credentials in the repository that may have already been compromised need to be
rotated and moved to secure locations, like environment variables.

Cost: $2,000

Timeline: 1 week

The certificate in the repository needs to be rotated and replaced with fresh
certificates that are stored in a secure location.

Cost: $2,000

Timeline: 1 week

Since mobile apps can be reverse engineered, it’s dangerous to have information in
the code that can be used to access any administrative accounts. This would require
building a separate web application, and then removing the god mode access.

Cost and timeline unknown until this feature is better defined.

Replace the plaintext passwords in the databases with properly hashed passwords.
This was likely done this way to support authentication across the services, so there
will probably be some challenges in migrating the content.

Cost and timeline unknown until more testing is done on a staging server. Making this
change on the production server can accidentally break access.

Recommendations | Nice to Have

Technical Risk Assessment for Astral Yeti Energy pg 10

Codebase says Copyright Mobility Quotient Solutions

in a few places
We need to check if this is true or if it’s something we can change, or if it’s something
we need to credit.

Cost: < $500

Timeline: < 1 day

Add new documentation to Github repository wikis
While performing the audit, we documented clean project setup processes to add to
the documentation. Currently, the Github organization does not support Wikis. Ideally,
we would turn this on and add it there, extracting the content currently in the readme
and structure it into something more usable long term. We would also remove
documentation that does not work.

Cost: < $500

Timeline: < 1 day

Move images out of MongoDB
About 400mb of images are currently being stored in MongoDB. This is not
conventional but seems to be working right now. If there are more images to be
added, we would recommend moving them to something like S3. However, it seems
to be working well enough for now that the cost to change this implementation would
not be justifiable at this time.

Cost: $5,000+

Timeline: 3 weeks

This concludes the technical risk assessment for

Astral Yeti Energy

This assessment was conducted by Pixeltree Inc.

Contact info

www.pixeltree.ca

serene@pixeltree.ca

	TechnicalRiskAssessment_Coverpage-1
	TechnicalRiskAssessment_Coverpage-2
	TechnicalRiskAssessment_Coverpage-3
	TechnicalRiskAssessment_Coverpage-4
	TechnicalRiskAssessment_Coverpage-5
	TechnicalRiskAssessment_Coverpage-6
	TechnicalRiskAssessment_Coverpage-7
	TechnicalRiskAssessment_Coverpage-8
	TechnicalRiskAssessment_Coverpage-9
	TechnicalRiskAssessment_Coverpage-10
	TechnicalRiskAssessment_Coverpage-11
	TechnicalRiskAssessment_Coverpage-12
	TechnicalRiskAssessment_Coverpage

